Efficient Gaussian Sampling for Solving Large-Scale Inverse Problems using MCMC Methods
نویسنده
چکیده
The resolution of many large-scale inverse problems using MCMC methods requires a step of drawing samples from a high dimensional Gaussian distribution. While direct Gaussian sampling techniques, such as those based on Cholesky factorization, induce an excessive numerical complexity and memory requirement, sequential coordinate sampling methods present a low rate of convergence. Based on the reversible jump Markov chain framework, this paper proposes an efficient Gaussian sampling algorithm having a reduced computation cost and memory usage. The main feature of the algorithm is to perform an approximate resolution of a linear system with a truncation level adjusted using a self-tuning adaptive scheme allowing to achieve the minimal computation cost. The connection between this algorithm and some existing strategies is discussed and its efficiency is illustrated on a linear inverse problem of image resolution enhancement. This paper is under revision before publication in IEEE Transactions on Signal Processing
منابع مشابه
Randomize-Then-Optimize: A Method for Sampling from Posterior Distributions in Nonlinear Inverse Problems
High-dimensional inverse problems present a challenge for Markov chain Monte Carlo (MCMC)-type sampling schemes. Typically, they rely on finding an efficient proposal distribution, which can be difficult for large-scale problems, even with adaptive approaches. Moreover, the autocorrelations of the samples typically increase with dimension, which leads to the need for long sample chains. We pres...
متن کاملRééchantillonnage de l’échelle dans les algorithmes MCMC pour les problèmes inverses bilinéaires
This article presents an efficient method for improving the behavior of the MCMC sampling algorithm involved in the resolution of bilinear inverse problems. Blind deconvolution and source separation are among the applications that benefit from this improvement. The proposed method addresses the scale ambiguity inherent to bilinear inverse problems. Solving this type of problem within a Bayesian...
متن کاملA Stochastic Newton MCMC Method for Large-Scale Statistical Inverse Problems with Application to Seismic Inversion
We address the solution of large-scale statistical inverse problems in the framework of Bayesian inference. The Markov chain Monte Carlo (MCMC) method is the most popular approach for sampling the posterior probability distribution that describes the solution of the statistical inverse problem. MCMC methods face two central difficulties when applied to large-scale inverse problems: first, the f...
متن کاملAn MCMC Method for Uncertainty Quantification in Nonnegativity Constrained Inverse Problems
The development of computational algorithms for solving inverse problems is, and has been, a primary focus of the inverse problems community. Less studied, but of increased interest, is uncertainty quantification for solutions of inverse problems obtained using computational methods. In this paper, we present a method of uncertainty quantification for linear inverse problems with nonnegativity ...
متن کاملA New Play-off Approach in League Championship Algorithm for Solving Large-Scale Support Vector Machine Problems
There are many numerous methods for solving large-scale problems in which some of them are very flexible and efficient in both linear and non-linear cases. League championship algorithm is such algorithm which may be used in the mentioned problems. In the current paper, a new play-off approach will be adapted on league championship algorithm for solving large-scale problems. The proposed algori...
متن کامل